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Diagnostic models of ice flow

Solve mechanical stress-equilibrium for the entire ice sheet/ice shelf. Can
be done in 2D (SSA) or 3D (SIA, Higher-order, Full-Stokes). Material is
isotropic nonlinear (Glen’s law) in the creep regime of deformation.
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Capabilities Inve I’SIOH

Diagnostic Models Rely on surface velocities (INSAR) to infer unknown parameters in the ice

Inversion . . . . T

Parallel Computing flow equations, such as viscosity, ice rigidity or basal drag.
Rifting/Faulting

Higher-order, Full-Stokes

Anisotropic Adaptation
Prognostic Models ff { obv + (V - vobs)z}dxdy +

Thermal Analysis
Sensitivity Analysis
Ice Thickness Assimilation

3D Hydrostatic Grounding
:“,\;Z:gr; o ff Mxyy i 2vH 2&_u+ » + 7 vH 3_u+ » - pgH % _ Bu pdxdy+
Ice/Atmosphere s ox ax dy dy ady  ox ox

Interaction

Diverse software

developments.
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Capabilities Para”el Computlng

Diagnostic Models

Inversion = ISSM can run on any

2D SSA Diagnostic 3D BP Diagnostic

Parallel Computing . %0 e
Rifing Faing platform (multi-core " s
Higher-order, Full-Stokes ) o Toomoas
P A desktop), shared or al \ e

Prognostic Models distributed cluster

Thermal Analysis

Senstiviy Anslysis + C++ implementation of

Ice Thickness Assimilation

3D Hycrostati Grounding computational core using

Parallel efficiency (% of linear scaling)
5 8
,/W
7
P
-
-

Parallel efficiency (% of linear scaling)

e MPICH and PETSc ‘ "
esmoseiey libraries + array of o s

e sy parallel libraries for
partitioning, iterative and

loo ow models direct solvers

Basal conditions

‘Hd‘ data Multi-threading of pre

loolamosphere and post-processing

o modules to increase S

o cepsbilies speed significantly Hoeratrocsnashrens

Numerics

Paralle effciency (% of linear scaling)
Parallel effciency (% of linear scaling)
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cwediiies —— Parallel libraries
ISSM relies on a series of libraries to implement parallelism:

e + PETSc Portable, Extensible Toolkit for Scientific Computation

imerson [Balay et al., 1997, Balay et al., 2008, Balay et al., 2009]. PETSc is a

el Goming suite of data structures and routines for the scalable solution of
scientific applications modeled by partial differential equations. Used

mainly for its parallel structures (Vec and Mat objects) and iterative

parallel solvers.

+ MPICH1,2: Message Passing Interface
[Gropp et al., 1996, Gropp and Lusk, 1996] to manage parallel
communications between all cpus during solution sequences.

+ METIS: Software Package for Partitioning Unstructured Graphs,
Partitioning Meshes, and Computing Fill-Reducing Orderings of
Sparse Matrices [Karypis and Kumar, 1998]. This package is used to
partition objects such as elements and vertices across a cluster. This
partitioning scheme results in partitions that have equal numbers of
elements on each cluster node.

- MUMPS: Multifrontal Massively Parallel Sparse direct solver
[Amestoy et al., 2001, Amestoy et al., 2006]. Direct solver that suffers
few convergence issues. Relied upon often for the solution of any
system of equations. ISS™
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Capabilities le‘tl ng/FauItl ng

ISSM can account for the presence of rifts and faults in an ice shelf by
Diagrostic Models carrying out a steady-state computation of the contact within the rifts/faults.

Inversion

Parallel Computing
Rifting/Faulting Modeled Ice Rigiditiy
Higher-order, Full-Stokes
Anisotropic Adaptation 1600
Prognostic Models
Thermal Analysis
Sensitivity Analysis

Ice Thickness Assimilation
15501
3D Hydrostatic Grounding

Line Migration

Hydrology
Ice/Atmosphere
Interaction

Diverse software g 15001
developments =

(;),.5"2d) AupiBry 23|

Ice flow models

Basal conditions 1450

Inversion and data
assimilation

Ice/atmosphere 14
interactions

Ice/ocean interactions 1400~
Other capabilities

Numerics
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ceeedlites— Rifting/Faulting

Diagnostic Models
Inversion

Parallel Computing

Rifting/Faulting

Higher-order, Full-Stokes

Anisotropic Adaptation gy .

- - Rifting and faulting account for contact stresses and the presence of
Thermal Analysis melange

Sensitivity Analysis

(oo Thickness Assmizton + This is not an initiation or propagation capability

3D Hydrostatic Grounding
Line Migration . g
oo - Relies on penalty methods to enforce contact conditions between
JRAUICeES flanks of rifts
- Relies on diagnostic model to compute stresses across ice shelf

developments,
- This is not an LEFM capability. It assumes the entire ice shelf is creeping,
Ice flow models and there is no inclusion of elastic stresses

Basal conditions

Inversion and data
assimilation
Ice/atmosphere
interactions

Ice/ocean interactions
Other capabilities

Numerics
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Damage Mechanics

ISSM can also introduce a damage variable into Glen’s law, to account and
invert for the presence of damage through the thickness of an ice shelf. For

more details, we refer to Borstad et al, 2012.

ISsM
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Capabilities Higher-ordel’ and Full-Stokes mOde”ng
2D SSA 3D BP

Diagnostic Models
Inversion

Computing

e ISSM relies on the the 2D SSA
e or;l'iuu Stokes to capture longitudinal stresses,
huiscioe 3D Blatter/Pattyn to capture
vertical shear stresses and
full-Stokes equations to capture
all stresses within the ice sheet

Paral

Prognostic

Hydrology

Activation of all three

Ice/Atmosphere

e formulations is seamless, relying ~ —01 10
on almost the same model setup . 18
— experimentation is easy £
. . -20
- Coupled with parallel computing &
and anisotropic meshing, 7 25

higher-order modeling at the
continental scale is achievable
with reasonable resolutions

8

0 5 -5 0 5
X(100 km) X(100 km)
Figure 8. Modeled surfsce velocity (in m/yr) (using

i b demg cofiient) b 2D By Scromn
oo (), the 3D Blater/ Pty model (1) 20d the 3D

/o) ot e i ISSM
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Anisotropic adaptation

Vg (iy]
Adapt mesh 12000}
according to a

metric, such as

surface velocity

Static capability,
not transient
adaptation
Relies on a

rewrite of the
BAMG

10000

anisotropic
mesher Tl e st
[Hecht, 2006] B R e ST
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Capabilities PrognOS‘“C mode|lng

Diagnostic Models

e + Mass transport equations:

Parallel Computing

Rifting/Faulting

Higher-order, Full-Stokes

Anisotropic Adaptatior —

ongnos:)ic Mod:ls at + v . HV = A/IS - Alb

Thermal Analysis
Sensitivity Analysis

Ice Thickness Assimilation

- Update of surface and bed is hydrostatic on ice shelves. For ice

3D H: tic Grounding

P sheets, surface is updated assuming the bedrock is fixed

Fe 00 - Mass transport equations are coupled with diagnostic and thermal

Do s models to allow for complete transient models to be run (SeaRISE
2011)

S - Boundary conditions assume fixed thickness at the ice divide, and free

josionardSan flux of mass at the calving front or the grounded margins

+ Calving front dynamics not included yet
SR - Grounding line dynamics is hydrostatically treated

Numerics
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Capabilities Thermal modellng

Diagnostic Models 20;
inversion + Thermal model, full-advection
E and full-diffusion in 3D + viscous | 10 B10°Pas™)
:gh‘pdA(:;“j” heating. Mesh velocity in vertical g ;
e direction. Solve for temperature. g 0 2

1

Thermal Analysis

Sensitivity Analysis aT k ¢

Sensitivity Analysis :(W—V)VT-F% .
P P

Ice Thickness Assimilation at
3D Hydrostatic Grounding

>
\'

+
|

Line Migration 20
Hydrology .

. + Boundary conditions:

Interaction

Diverse software « T = Ts at surface

G - Atice/bed interface:

Ice flow models kthVT -n= G —Tp-Vp

Basal conditions

Inversion and data

assimilation
S + [Holland and Jenkins, 1999] at
fcelocean nieracions the ice/ocean interface:

Other capabilities

Numeres knV'T-n=—pucoMy (T — Ty)




ISSM WORKSHOP 2012 JPL / UC IRVINE

Capabilities

Melting at the ice/bed interface

+ Two models for computing melting rates:

+ Linear model where computation of
temperatures is updated once for each Linear
temperature that goes above pressure :

melting point

S  Non-linear model where fixed-point

S scheme is used, where temperatures

are updated until all of temperature field

is below or at pressure melting point

Melting rate is recovered using:
__A(ar _ar o
PiccL

Anisotropic

Prognos

(100 km)

M (miyr)
1

0.056
0.0032
0.00018
1e-05

dz dz

where T~ is the temperature without
pressure melting point constraints and T is
the temperature after application of
constraints. Non-linear model results in ELET SR,
much lower melting rates, even though Xueokm
locations for melting are similar. It is critical

to take into account non-linearity of thermal

model, at least in steady-state! ISSM

Y(100 km)
o
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Capabilities Thermal modellng

Diagnostic Models
Inversion

Parallel Computing
Rifting/Faulting
Higher-order, Full-Stokes
Anisotropic Adaptation
Prognostic Models

UG (D New thermal model, based on [Aschwanden et al., 2012]. Enthalpy

Sensitivity Analysis . . . .
e mieccss asmizon fOrmulation, allows to recover more physically consistent melting rates.

3D Hydrostatic Grounding

Line Migration
Hycrology Avoids relying on penalty formulations to constrain temperature to pressure
Ice/Atmosphere . . . . g

itracton melting point. System of equations is better conditioned — > more

e favourable for iterative solvers.

Ice flow models
Basal conditions

Inversion and data
assimilation

Ice/atmosphere
interactions

Ice/ocean interactions
Other capabilities

Numerics
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Capabilities Sens|t|V|ty ana|ySIS

Diagnostic Models
Inversion

alll Gomputing + Sampling and local

reliability methods to
study the impact of
different areas of the
mesh

Sampling of the mesh
using Chaco, Scotch and
Metis partitioners

Partition the mesh into
equal area subsections,
which then can be
updated for each sample
of a Monte-Carlo or local
reliability simulation
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Capabilities

Sensitivity analysis
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Assimilation of ice thickness (balanced thickness)

* Ice thickness can be optimized to ensure smooth divergence of the flux
(thinning rate) [Morlighem et al., 2011]

Thickness from Kriging

-1050
-1060

-1070

y [km]

-1080( "

-1090

-1100
400 420 440 460
x [km]

Thickness from mass conservation

400

Flux divergence [m/yr]

Thickness [m]
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Capabiliies 3D Hydrostatic grounding line migration

Diagnostic Models
Inversion

Parallel Computing

Rifting/Faulting
R * At each time step of the transient ice flow solution, we check the
Prognosti Model following for every vertex of the mesh:

Thermal Analysis

Sensilvty Analysis b < by where b, is the depth of the glacier bed or seafloor. For most
Ice Thickness Assimilation . . . . . . . g .
- —— ice sheet/ice shelf configurations, b is negative. If this condition is

Line Migration

verified for a floating vertex (i.e., on an ice shelf), we ground the vertex

Hydrology

Ice/Atmosphere and force b = ba

Interaction

b > bye where by is the depth of the bottom of the ice in hydrostatic
equilibrium: bye = Hp/pw. If this condition is verified for a grounded

developments.

R vertex (i.e., on the ice sheet), we unground the vertex and force
Inversion and data b = bHE

assimilation

tmosphere
n interactions

Other capabilities

Numerics
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3D Hydrostatic grounding line migration
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Capabilities

3D Hydrostatic grounding line migration
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Prognostic Models T 500 86.6 yr

Thermal Analysis ﬂ

Sensitivity Analysis -1000

Ice Thickness Assimilation I becrock

3D Hydrostatic Grounding -100

Line Migration

Hydrology

D 3000 fiﬁjﬁ? 1995 (miyr) :

?;‘/Z":" :‘:"”(“;’“ —.—-- Grounding line posttion in 1996 o o
developmer
g 2000

Ice flow models 1000
Basal conditions -

Inversion and data 0 | | |

assimilation -100 -5 0 50
Ice/atmosphere Distance from 96 grounding line (km)

interactions 4
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Capabiliies 3D Hydrostatic grounding line migration
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Inversion
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Prognostic Models 115 yr

Elevation (m)

Thermal Analysis
Sensitivity Analysis
Ice Thickness Assimilation

3D Hydrostatic Grounding
Line Migration

Hydrology

Ice/Atmosphere !
—— Vi)

Interaction 3000 V(n y\n) 1996 (miyr) !
— = Vans

—-—Grounding line position in 1996

Diverse software
developments.

Ice flow models 10001
Basal conditions =

Inversion and data 0 I L I
assimilation -100 50

-50 0
Ice/atmosphere Distance from 96 grounding line (km)
interactions 4

Ice/ocean interactions
Other capabilities

Numerics
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Capabiliies 3D Hydrostatic grounding line migration
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Elevation (m)
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Sensitivity Analysis
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Interaction 30007 Vs N 1936 (A7) ;

Diverse software
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Ice flow models 1000
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|
e S = ; o
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Capabilities

3D Hydrostatic grounding line migration
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Capabilities
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Capabilities

3D Hydrostatic grounding line migration
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w 10° Time:  1993.8yr

-2.55
-2.6 3 farounding Line
-2.65
27

3D Hydrostatic Grounding
Line Migration

275

-2.9 Grounding Line

—1.62 -1.61 -1.6 -1.59 0 158 157



ISSM WORKSHOP 2012 JPL / UC IRVINE

ceadiies 3D Hydrostatic grounding line migration

w 10° Time: 20001 yr

-2.55
-2.6 3 farounding Line
-2.65
27

3D Hydrostatic Grounding
Line Migration

275

-2.9 Grounding Line

—1.62 -1.61 -1.6 -1.59 0 158 157



ISSM WORKSHOP 2012 JPL / UC IRVINE

ceadiies 3D Hydrostatic grounding line migration

w 10° Time: 20005 yr

-2.55
-2.6 3 farounding Line
-2.65
27

3D Hydrostatic Grounding
Line Migration

275

-2.9 Grounding Line

—1.62 -1.61 -1.6 -1.59 0 158 157



ISSM WORKSHOP 2012 JPL / UC IRVINE

ceadiies 3D Hydrostatic grounding line migration
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ceadiies 3D Hydrostatic grounding line migration
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SRS Hydrology model

Diagnostic Models
Inversion

R [Le Brocq et al., 2009]: the evolution of the water-film thickness (w) is given
Rifting/Faulting by

Higher-order, Full-Stokes
Anisotropic Adaptation

S——— dw

Thermal Analysis — = S - V.(W-Z)

Sensitivity Analysis t

Ice Thickness Assimilation

Hycrology With w the water thickness, S the basal melting rate and uy the
loa/Atmosphere depth-averaged water velocity vector.

Interaction

pressenes Assuming a laminar flow between two parallel plates:
2
w Vo
Basal conditions
m/evs‘o:am data 12M and D= p,'gzs + (pw - pi)gzb -N

where p is the water viscosity, zs and z, the surface and bed elevatinos, N
the effective pressure and ¢ the pressure potential.

Ice flow models u =
w
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SRS Hydrology model

Because we assume a
non-arborescent drainage W (cm)
system, we cancel the ‘ ‘ o ‘
effective pressure N:

VO =p,eVz +(p,-0)gVz,

Hyds

rology
-

At

0.67

This set of assumptions
results in the following
non-linear system:

5 0.045
X(100 km)

dw w?
—=85-V.|—Vo
dt 12u
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Capabilities

ISSM now capable of transient forcing at the surface, using SMB time
Diagrostc Models series (Schelegel et al., 2012, in revision).

Inversion

Parallel Computing

Rifting/Faulting . . .
N Time Series: Ice Sheet Change in Mass
Higher-order, Full-Stokes 100000
Anisotropic Adaptation 000
Prognostic Models 900.00
100000
Thermal Analysis 2000
Sensitivity Analysis
200000
Ice Thickness Assimilation 70000
3D Hydrostatic Grounding
-3000.00
Line Migration 200,00
2
Hydrolo 2 £
yerology § 400000 500.00 S
Ice/Atmosphere [l
Interaction 10000
-5000.00
Diverse software
developments. 30000
-6000.00
20000
Ice flow models 700000 -
Total Mass Change —
Basal conditions Climate=Accumulation-Melt
Inversion and data -8000.00 L g
assimilation §SSHEEEECEEE88 38R S nE3 e 888558888888

Ice/atmosphere
interactions

Ice/ocean interactions
Other capabilities

In addition, new PDD model contributed by Kevin Le Morzadec.

Numerics
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e + Python now supported as a new scientific toolkit.

+ Windows XP64/Vista 64 supported in serial mode. Working towards
et parallel port. Packaging supported.

e + Android support to run ISSM native.

Diverse software
developments.

Ice flow models

assimilation

Ice/atmosphere

T
i
=
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ISSM WORKSHOP 2012 JPL / UC IRVINE

Capabilities ICe models

Diagnostic Models
Inversion

Parallel Computing

Rifting/Faulting

Higher-order, Full-Stokes . . . .
et + Ice anisotropy not included (ice fabrics)

Prognostic Models

i T — lce considered isotropic

Sensitivity Analysis

Ice Thickness Assimilation » Cold ice model used in thermal model

— No polythermal ice

Hydrology
EhimieE + Moving grounding line based on hydrostatic equilibrium
e — Not implemented for full-Stokes (based on contact mechanics)

* Ice front and margins fixed in time, no calving law

Ice flow models

S — Calving rate equal to ice velocity
assimilation

Ice/atmosphere

interactions

Ice/ocean interactions

Other capabilities
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Capabilities

Basal conditions

-+ Basal friction fixed in time
JFaing » Hydrology not coupled to basal friction
v Apn - Sub-glacial hydrology only

Anisotropic Ad

Prognostic

Thermal An — No englacial hydrology
Sensitivi
Ice Thickness Assimilation Ve
3D Hy ounding W (cm) s a [m/s)
Line Mig - 10 2 " : Zoq
Hydrology 5
15k
Ice/Atmosphere
26 mk . 15
= = 10
£ g
3 0.67 B ‘
Ice flow models = 7 50
Basal conditions ‘
0.17 0 0
15 ‘
, 20b
o 10 0045 s 15 o s W
X(100 km) X100 km)




ISSM WORKSHOP 2012

JPL / UC IRVINE

Capabilities

Diagnostic Models
Inversion

Parallel Computing
Rifting/Faulting
Higher-order, Full-Stokes
Anisotropic Adaptation
Prognostic Models
Thermal Analysis
Sensitivity Analysis

Ice Thickness Assimilation

3D Hydrostatic Grounding
Line Migration

Hydrology

Ice/Atmosphere
Interaction

Diverse software
developments.

Ice flow models
Basal conditions

Inversion and data
assimilation

Ice/atmosphere
interactions

Ice/ocean interactions
Other capabilities

Numerics

Inversions and data assimilation

o (mls) 12

Inversions limited to:
* Ice rheology
- Basal friction

* Ice thickness consistency with
velocities

— Assimilation for a given time
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JPL / UC IRVINE

Capabilities

Diagnostic Models
Inversion

Parallel Computing
Rifting/Faulting
Higher-order, Full-Stokes
Anisotropic Adaptation
Prognostic Models
Thermal Analysis
Sensitivity Analysis

Ice Thickness Assimilation

3D Hydrostatic Grounding
Line Migration

Hydrology

Ice/Atmosphere
Interaction

Diverse software
developments.

Ice flow models
Basal conditions

Inversion and data
assimilation

Ice/atmosphere
interactions

Ice/ocean interactions
Other capabilities

Numerics

Ice/atmosphere interactions

Two way coupling to Atmosphere not implemented.

No surface model for atmospheric coupling. This will probably remain on

the Atmopsheric side.
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S Ice/ocean interactions
Interaction between ice and ocean not included
 Melting rates under ice shelved prescribed

Diagnostic Models

e - Sealevel fixedat z =10
e — ECCOS project to couple ocean and ice models

Higher-order, Full-Stokes
Anisotropic Adaptation
Prognostic Models

Thermal Analysis
u Mean Melt Rate dh/dt [m/a]

Sensitivity Analysis 2
Ice Thickness Assimilation
3D Hydrostatic Grounding 15 ;DO
Line Migration S A
Hydrology 1 E _‘-5
Ice/Atmosphere Q=
Interaction 05 o £
Diverse software ws
developments 0

05
Ice flow models .
Basal conditions -
Inversion and data 15 o
assimilation Dy
Ice/atmosphere P S -
interactions =T

=

Ice/ocean interactions 25 [} =
Other capabilities = T

3

Numerics

1979 - 2007
Schodlok et al., submitted ISSM
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Capabilities Other Capab”ities

- Post-glacial rebound: efforts to couple with PGR Model from lvins et
Diagnostic Models aI, 1993.

Inversion

Paralel Comping - Rift propagation. Ongoing dvpt to include transient damage
Rifting/Faulting propagatlon

Higher-order, Full-Stokes
Anisotropic Adaptation

Prognostic Models

Modeled Ice Rigiditiy

Y
Thermal Analysis 10

Sensitivity Analysis

Ice Shelf
—Rifts

Ice Thickness Assimilation 16001

3D Hydrostatic Grounding
Line Migration

Hydrology
Ice/Atmosphere 1550
Interaction
Diverse software
developments.

1500

Y(km)

Ice flow models

(5% B 221

Basal conditions

Inversion and data
assimilation 1450 . e

Ice/atmosphere
interactions

Ioe/ocean interactions
Other capabilities 1400|

Numerics

L L i L
-750 700 -650 -600 -550 -500
X
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Capabilities NumerlCS

Diagnostic Models
Inversion

Parallel Computing
Rifting/Faulting
Higher-order, Full-Stokes
Anisotropic Adaptation

Prognostic Models = Only triangle (2D) and prismatic (3D) elements
Thermal Analysis
il — No quadrangle elements

Ice Thickness Assimilation

3D Hydrostatic Grounding + Only P1 (piecewise linear nodal functions)

Line Migration
Hydrology — No quadratic or higher-order interpolations
Ice/Atmosphere

erecton - Direct solver used for full-Stokes model

Diverse software
developments.

— No scalable solver (iterative solver). Ongoing work by Feras Habbal for
i scalable solvers using PETSc.

Basal conditions

Inversion and data
assimilation

Ice/atmosphere
interactions

Ice/ocean interactions
Other capabilities
Numerics
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SR Conclusions

Diagnostic Models
Inversion

Parallel Computing
Rifting/Faulting
Higher-order, Full-Stokes
Anisotropic Adaptation

Prosnesieocel - ISSM represents a wide array of capabilities, geared toward solving
Sansitiy Analysis specific cryosphere challenges such as projections of future sea level
Ice Thickness Assimilation rlse

Fiydroloay - Extensive software and architecture support, as well as wide array of
D numerical solutions and physics implemented

Diverse software

developments, = Challenges remain, such as grounding line dynamics using FS,
moving margins and ice/ocean interactions

Ice flow models
Basal conditions

Inversion and data
assimilation

Ice/atmosphere
interactions

n interactions

pabilities

Conclusions
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Prognostic Models
Thermal Analysis
Sensitivity Analysis

Ice Thickness Assimilation

3D Hydrostatic Grounding
Line Migration

Hydrology

Ice/Atmosphere
Interaction

Diverse software
developments.

Ice flow models
Basal conditions

Inversion and data
assimilation

Ice/atmosphere
interactions

Ice/ocean interactions
Other capabilities

Numerics

Conclusions
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Diverse software
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